Abstract

ABSTRACTIn this paper, we extend the familiar continuum electrostatic model to incorporate finite-size effects in the solvation layer, by perturbing the usual macroscopic interface condition. The perturbation is based on the mean spherical approximation (MSA), to derive a multiscale solvation-layer interface condition (SLIC/MSA). We show that SLIC/MSA reproduces MSA predictions for Born ions in a variety of polar solvents, including water as well as other protic and aprotic solvents. Importantly, the SLIC/MSA model predicts not only solvation free energies accurately but also solvation entropies, which standard continuum electrostatic models fail to predict. The SLIC/MSA model depends only on the normal electric field at the dielectric boundary, similar to our recent development of a SLIC model for charge-sign hydration asymmetry, and the reformulation of the MSA as an effective boundary condition enables its straightforward application to complex molecules such as proteins, whereas traditionally it is primarily a bulk theory. This work also opens the possibility for other electrolyte models to be incorporated into fast implicit-solvent models of biomolecular electrostatics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call