Abstract

In this work we present a generalised virial equation of state for natural gas systems under custody transfer conditions. The model is based on corresponding states expressions for the second and third virial coefficients with argon as the reference fluid. These functional forms involve 12 adjustable coefficients. For the extension to mixtures we propose a one-fluid mixture model with binary interaction parameters in the combining rules for the mixture critical temperature and density. We obtained overall average absolute deviations (AAD) of 0.04 and 0.08% in pure-fluid compression factors and speeds of sound; AADs of 0.07 and 0.19% in compression factors and speeds of sound, respectively, of binary mixtures and AADs of 0.047, and 0.13% in natural gas compression factors and speeds of sound, respectively. These results compare favourably with equivalent calculations with other generalised virial coefficient models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call