Abstract
Regularly varying stochastic processes model extreme dependence between process values at different locations and/or time points. For such processes we propose a two-step parameter estimation of the extremogram, when some part of the domain of interest is fixed and another increasing. We provide conditions for consistency and asymptotic normality of the empirical extremogram centred by a pre-asymptotic version for such observation schemes. For max-stable processes with Frechet margins we provide conditions, such that the empirical extremogram (or a bias-corrected version) centred by its true version is asymptotically normal. In a second step, for a parametric extremogram model, we fit the parameters by generalised least squares estimation and prove consistency and asymptotic normality of the estimates. We propose subsampling procedures to obtain asymptotically correct confidence intervals. Finally, we apply our results to a variety of Brown-Resnick processes. A simulation study shows that the procedure works well also for moderate sample sizes.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have