Abstract

We study the symplectic Howe duality using two new and independent combinatorial methods: via determinantal formulae on the one hand, and via (bi)crystals on the other hand. The first approach allows us to establish a generalised version where weight multiplicities are replaced by branching coefficients. In turn, this generalised Howe duality is used to prove the injectivity of induction for Levi branchings as previously conjectured by the last two authors.Mathematics Subject Classifications: 17B10, 17B37, 05E05, 05E10Keywords: Lie algebras, representation theory, Schur-Weyl duality, Howe duality, crystals, Schur functions, induced modules

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.