Abstract
In this paper we discuss general tridiagonal matrix models which are natural extensions of the ones given in Dumitriu and Edelman (J. Math. Phys. 43(11): 5830–5847, 2002; J. Math. Phys. 47(11):5830–5847, 2006). We prove here the convergence of the distribution of the eigenvalues and compute the limiting distributions in some particular cases. We also discuss the limit of fluctuations, which, in a general context, turn out to be Gaussian. For the case of several random matrices, we prove the convergence of the joint moments and the convergence of the fluctuations to a Gaussian family. The methods involved are based on an elementary result on sequences of real numbers and a judicious counting of levels of paths.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have