Abstract

The reaction of UO2(NO3)2.6H2O with Co or Cu metal, phosphoric acid, and CsCl under mild hydrothermal conditions results in the formation of Cs2{(UO2)4[Co(H2O)2(HPO4)(PO4)4} (1) or Cs(3+x)[(UO2)3CuH(4-x)(PO4)5].H2O (2). The structure of 1 contains uranium atoms in pentagonal bipyramidal and hexagonal bipyramidal environments. The interaction of the uranyl cations and phosphate anions creates layers in the [ab] plane. The uranyl phosphate layers are joined together by octahedral Co centers wherein the Co is bound by phosphate and two cis water molecules. In addition, the Co ions are also ligated by a uranyl oxo atom. The presence of these octahedral building units stitches the structure together into a three-dimensional framework where void spaces are filled by Cs+ cations. The structure of 2 contains uranium centers in UO6 tetragonal bipyramidal and UO7 pentagonal bipyramidal geometries. The uranyl moieties are bridged by phosphate anions into sinusoidal sheets that extend into the [bc] plane and are linked into a three-dimensional structure by Cu(II). The Cu centers reside in square planar environments. Charge balance is maintained by Cs+ cations. Both the overall structures and the uranyl phosphate layers in 1 and 2 are novel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.