Abstract

The chemical structures of sweet compounds are very different, ranging from sugars to amino acids and peptides or other compounds such as saccharin. The biological mechanism underlying the generation of sweet taste is still unknown, although in the past few years much research has provided evidence for the existence of a true chemoreception process, mediated by receptor proteins on the taste buds. In particular, the initial step of the process involves the reversible binding of the sweet compounds to their receptor(s). In this work, we have investigated this binding via a pseudoreceptor model, which has been developed using a training set of 24 compounds belonging to different families including sugars, peptides, and other intensive sweeteners. This model provided a correlation coefficient (r(2)) of 0.985 between the calculated and the experimental free energies of binding, which are related to the molar relative sweetness, for the training set and is able to predict semiquantitatively free energies of ligand binding for an independent set of five test ligand molecules within 0.3-2.1 kcal mol(-1) of the experimental values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.