Abstract

We develop and implement linear formulations of general Nth order stochastic dominance criteria for discrete probability distributions. Our approach is based on a piece-wise polynomial representation of utility and its derivatives and can be implemented by solving a relatively small system of linear inequalities. This approach allows for comparing a given prospect with a discrete set of alternative prospects as well as for comparison with a polyhedral set of linear combinations of prospects. We also derive a linear dual formulation in terms of lower partial moments and co-lower partial moments. An empirical application to historical stock market data suggests that the passive stock market portfolio is highly inefficient relative to actively managed portfolios for all investment horizons and for nearly all investors. The results also illustrate that the mean–variance rule and second-order stochastic dominance rule may not detect market portfolio inefficiency because of non-trivial violations of non-satiation and prudence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.