Abstract

Abstract Multiple parallel rainbands (MPRBs) involve the organization of mesoscale convective systems (MCSs) characterized by multiple parallel convective rainbands, which may produce high rainfall accumulation. A total of 178 MPRBs were identified from 2016 to 2020 in China, which were classified into the initiation type (∼40%), where rainbands initiate individually, and differentiation type (∼60%), where rainbands form through the splitting of large rainbands or merging of smaller cells. Results showed that the occurrence frequency of MPRBs peaks in July with a midnight major peak and a morning minor peak. The highest occurrence frequency is observed in the northern Beibu Gulf and its coastal areas, with minor high frequencies in Guangdong, northern Jiangxi, and southern Shandong provinces, typically in a southwesterly low-level jet to the west of the subtropical high. MPRBs mainly contain 3–4 rainbands with a spacing distance of 30–50 km and an orientation generally consistent with the direction of 850-hPa winds and 0–1-km vertical wind shear. MPRBs generally move slower than that of squall lines in East China ranging from 4 to 8 m s−1 with 16% being quasi-stationary, which is mainly due to the occurrence of band back building mainly associated with cold pool. Most MPRBs have training effects with band training as the dominant mode. Because of the band training effect and slower movement of MPRBs mainly due to band back building, 71% of MPRBs are associated with enhanced maximum hourly rainfall. Rainfall severity may be alleviated somewhat by the generally short duration of MPRBs with 78% being shorter than 2 h. Significance Statement The purpose of this study is to document the general features of mesoscale convective systems (MCSs) with a specific organization of multiple parallel rainbands (MPRBs). MCSs with this unique organization tend to produce extremely heavy rainfall partly due to the training of multiple rainbands as well as their slow movement because of back building. The organization pattern of MPRBs was previously found in a case study. The possible formation mechanism was also previously examined based on case studies. As a complement to these studies, this work aims to reveal the temporal and spatial distributions, movement and duration, morphology, precipitation patterns, and environmental features of MPRBs in China based on statistics using 5-yr radar reflectivity data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call