Abstract
We present a detailed implementation of two bispectrum estimation methods which can be applied to general non-separable primordial and CMB bispectra. The method exploits bispectrum mode decompositions on the domain of allowed wavenumber or multipole values. Concrete mode examples constructed from symmetrised tetrahedral polynomials are given, demonstrating rapid convergence for known bispectra. We use these modes to generate simulated CMB maps of high resolution (l > 2000) given an arbitrary primordial power spectrum and bispectrum or an arbitrary late-time CMB angular power spectrum and bispectrum. By extracting coefficients for the same separable basis functions from an observational map, we are able to present an efficient and general f_NL estimator for a given theoretical model. The estimator has two versions comparing theoretical and observed coefficients at either primordial or late times, thus encompassing a wider range of models, including secondary anisotropies, lensing and cosmic strings. We provide examples and validation of both f_NL estimation methods by direct comparison with simulations in a WMAP-realistic context. In addition, we show how the full bispectrum can be extracted from observational maps using these mode expansions, irrespective of the theoretical model under study. We also propose a universal definition of the bispectrum parameter F_NL for more consistent comparison between theoretical models. We obtain WMAP5 estimates of f_NL for the equilateral model from both our primordial and late-time estimators which are consistent with each other, as well as with results already published in the literature. These general bispectrum estimation methods should prove useful for the analysis of nonGaussianity in the Planck satellite data, as well as in other contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physical Review D
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.