Abstract
Li-excess manganese-based oxide layered structures, have drawn increasing interests as the promising cathodes to succeed the conventional LiCoO2 in lithium ion batteries (LIBs). It could deliver a higher energy density and output potential, as well as the nature of environment benign and low cost. Pristine Li-excess manganese-based oxides however suffer from poor rate capacity and voltage fading after cycling, and their inherent capacity limits of bulk size in performance. Micro-/Nanostructured electrode materials are considered to hold the key to overcome these thresholds. This paper reports a general approach to prepare 0.33Li2MnO3 · 0.67LiNi1/3Co1/3Mn1/3O2 microspheres with pores and void space, which benefits improving both the capacity and cyclability. The electrode made of hollow 0.33Li2MnO3 · 0.67LiNi1/3Co1/3Mn1/3O2 microspheres exhibits a 224 mAh g-1 discharge capacity over 200 cycles at 0.25 C rate, and 195 mAh g-1 at 5.0 C rate. These results indicated good perspective of hollow microspheres for practical battery applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.