Abstract
We examined the role of spinal tumor necrosis factor-alpha (TNFalpha) in neuropathic pain of peripheral nerve origin. Two weeks after selective L5 spinal nerve ligation (SNL), rats exhibiting mechanical allodynia and thermal hyperalgesia showed a marked increase in full-length membrane-associated TNFalpha (mTNFalpha) in the dorsal horn of spinal cord, in the absence of detectable soluble TNFalpha peptide. Local release of the soluble p55 TNF receptor, achieved by herpes simplex virus vector-based gene transfer to dorsal root ganglion, resulted in a reduction of mTNFalpha and concomitant reductions in interleukin-1beta and phosphorylated p38 MAP kinase. Subcutaneous inoculation of soluble p55 TNF receptor expressing HSV vector into the plantar surface of the hind foot ipsilateral to the ligation 1 week before SNL delayed the development of both mechanical allodynia and thermal hyperalgesia; subcutaneous inoculation into the hind foot ipsilateral to the ligation 1 week after SNL resulted in a statistically significant reduction in mechanical allodynia and thermal hyperalgesia that was apparent 1 week after inoculation. These results suggest a novel 'reverse signaling' through glial mTNFalpha, which may be exploited to downregulate the neuroimmune reaction in spinal cord to reduce chronic neuropathic pain.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have