Abstract

The specific hydrolytic activity of PON1 paraoxonase/arylesterase enzymes in liver and blood provides a natural barrier against the entry of organophosphate toxins into the central and peripheral nervous systems. Inherited differences in PON1 enzyme concentrations may determine levels of susceptibility to organophosphate injury in humans. To test whether boosting serum levels of PON1 enzymes by gene therapy might provide increased protection, we compared the degree of inactivation of whole brain acetylcholinesterase of mice exposed to chlorpyrifos 4 days after intravenous injection of recombinant adenoviruses containing PON1-LQ or PON1-LR genes or no PON1 gene. Both recombinant viruses containing PON1 genes boosted serum arylesterase concentrations by approximately 60% and significantly prevented the inactivation of brain acetylcholinesterase. Some mice were completely protected. These findings indicate that boosting serum levels of PON1 enzymes by a gene delivery vector raises the threshold for organophosphate toxicity by hydrolytic destruction before the chemical can enter the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.