Abstract

A large number of studies have demonstrated that various kinds of DNA damage accumulate during aging and one of the causes for this could be a decrease in DNA repair capacity. However, the level of total genomic repair has not been strongly correlated with aging. DNA repair of certain kinds of damage is known to be closely connected to the transcription process; thus, we chose to investigate the level of gene-specific repair of UV-induced damage using in vitro aging of human diploid skin fibroblasts and trabecular osteoblasts as model systems for aging. We find that the total genomic repair is not significantly affected during cellular aging of cultures of both human skin fibroblasts and trabecular osteoblasts. Gene-specific repair was analyzed during cellular aging in the dihydrofolate reductase housekeeping gene, the p53 tumor suppressor gene, and the inactive region X754. There was no clear difference in the capacity of young and old cells to repair UV-induced pyrimidine dimers in any of the analyzed genes. Thus, in vitro senescent cells can sustain the ability to repair externally induced damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.