Abstract

Modelling gene regulatory networks requires not only a thorough understanding of the biological system depicted, but also the ability to accurately represent this system from a mathematical perspective. Throughout this chapter, we aim to familiarize the reader with the biological processes and molecular factors at play in the process of gene expression regulation. We first describe the different interactions controlling each step of the expression process, from transcription to mRNA and protein decay. In the second section, we provide statistical tools to accurately represent this biological complexity in the form of mathematical models. Among other considerations, we discuss the topological properties of biological networks, the application of deterministic and stochastic frameworks, and the quantitative modelling of regulation. We particularly focus on the use of such models for the simulation of expression data that can serve as a benchmark for the testing of network inference algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.