Abstract
BackgroundAdvancements in gene expression technology allow acquiring cheap and abundant data for analyzing cell behavior. However, these technologies produce noisy, and often correlated, measurements on the transcriptional states of genes. The Boolean network model has been shown to be effective in capturing the complex dynamics of gene regulatory networks (GRNs). It is important in many applications, such as anomaly detection and optimal intervention, to be able to track the evolution of the Boolean states of a gene regulatory network using noisy time-series transcriptional measurements, which may be correlated in time.ResultsWe propose efficient estimators for the Boolean states of GRNs using correlated time-series transcriptional measurements, where the nature of the correlation and of the measurements themselves are entirely arbitrary. More specifically, we propose new algorithms based on a hypothesis tree to compute optimal minimum mean square error (MMSE) filtering and smoothing state estimators for a Partially-Observed Boolean Dynamical System (POBDS) with correlated measurements. The algorithms are exact but may be computationally expensive for large state spaces or long time horizons, in which case a process for pruning the hypothesis tree is employed to obtain an approximation of the optimal MMSE estimators, while keeping computation tractable. Performance is assessed through a comprehensive set of numerical experiments based on the p53-MDM2 negative-feedback loop Boolean regulatory network, where the standard Boolean Kalman Filter (BKF) and Boolean Kalman Smoother (BKS) for uncorrelated measurements are compared to the corresponding new estimators for correlated measurements, called BKF-CORR and BKS-CORR, respectively.
Highlights
Gene regulatory networks (GRNs) govern the functioning of key cellular processes, such as the cell cycle, stress response, and DNA repair
Performance is assessed through a comprehensive set of numerical experiments based on the p53-MDM2 negative-feedback loop Boolean regulatory network, where the standard Boolean Kalman Filter (BKF) and Boolean Kalman Smoother (BKS) for uncorrelated measurements are compared to the corresponding new estimators for correlated measurements, called BKF-CORR and BKS-CORR, respectively
4 Partially observed gene regulatory networks we describe a specific instance of the Partially-Observed Boolean Dynamical System (POBDS) model with correlated measurements in (1)–(3), which allows the application of the proposed BKF-CORR and BKS-CORR estimators to Boolean gene regulatory networks observed through noisy correlated geneexpression data
Summary
We propose efficient estimators for the Boolean states of GRNs using correlated time-series transcriptional measurements, where the nature of the correlation and of the measurements themselves are entirely arbitrary. We propose new algorithms based on a hypothesis tree to compute optimal minimum mean square error (MMSE) filtering and smoothing state estimators for a Partially-Observed Boolean Dynamical System (POBDS) with correlated measurements. The algorithms are exact but may be computationally expensive for large state spaces or long time horizons, in which case a process for pruning the hypothesis tree is employed to obtain an approximation of the optimal MMSE estimators, while keeping computation tractable. Performance is assessed through a comprehensive set of numerical experiments based on the p53-MDM2 negative-feedback loop Boolean regulatory network, where the standard Boolean Kalman Filter (BKF) and Boolean Kalman Smoother (BKS) for uncorrelated measurements are compared to the corresponding new estimators for correlated measurements, called BKF-CORR and BKS-CORR, respectively
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have