Abstract

ObjectiveTo elucidate the mechanisms by which orally administered tacrolimus was not absorbed in a patient following allogeneic hematopoietic stem cell transplantation. Clinical CourseA 17-year-old girl with acute myeloid leukemia underwent HLA-haploidentical peripheral blood stem cell transplantation following fludarabine, busulfan, and total-body irradiation. Graft-vs-host disease prophylaxis was post-transplant cyclophosphamide, followed by intravenous tacrolimus and mycophenolate mofetil. When tacrolimus was switched to oral administration, its blood level declined rapidly, resulting in development of acute graft-vs-host disease, which was ameliorated by switching back to intravenous administration. Methods/ResultsTo elucidate if impaired tacrolimus absorption could be related to genetic polymorphism of tacrolimus-metabolizing enzymes, we analyzed gene polymorphisms of cytochrome P450 3A4, cytochrome P450 3A5, and multidrug resistance 1 (MDR1). The patient had wild-type cytochrome P450 3A4 (*1/*1) and variant-type cytochrome P450 3A5 (*3/*3), while MDR1 genes (2677A/G, 3435C/C) were wild-type. ConclusionWild-type MDR1 gene product P-glycoprotein expressed in the intestine reduces drug absorption from the gastrointestinal tract and may have contributed to low blood levels of tacrolimus in this patient when tacrolimus was orally administered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call