Abstract

Objective: A major challenge in precision medicine is the development of patient-specific genetic biomarkers or drug targets. The firsthand information of the genes associated with the pathologic pathways of interest is buried in the ocean of biomedical literature. Gene ontology concept recognition (GOCR) is a biomedical natural language processing task used to extract and normalize the mentions of gene ontology (GO), the controlled vocabulary for gene functions across many species, from biomedical text. The previous GOCR systems, using either rule-based or machine-learning methods, treated GO concepts as separate terms and did not have an efficient way of sharing the common synonyms among the concepts. Materials and Methods: We used the CRAFT corpus in this study. Targeting the compositional structure of the GO, we introduced named concept, the basic conceptual unit which has a conserved name and is used in other complex concepts. Using the named concepts, we separated the GOCR task into dictionary-matching and machine-learning steps. By harvesting the surface names used in the training data, we wildly boosted the synonyms of GO concepts via the connection of the named concepts and then enhanced the capability to recognize more GO concepts in the text. The source code is available at https://github.com/jeroyang/ncgocr . Results: Named concept gene ontology concept recognizer (NCGOCR) achieved 0.804 precision and 0.715 recall by correct recognition of the non-standard mentions of the GO concepts. Discussion: The lack of consensus on GO naming causes diversity in the GO mentions in biomedical manuscripts. The high performance is owed to the stability of the composing GO concepts and the lack of variance in the spelling of named concepts. Conclusion: NCGOCR reduced the arduous work of GO annotation and amended the process of searching for the biomarkers or drug targets, leading to improved biomarker development and greater success in precision medicine.

Highlights

  • IntroductionIn precision medicine, the individual genomic variability is emphasized in prevention, screening, diagnosis and treatment [1, 2]

  • Targeting the compositional structure of the gene ontology (GO), we introduced named concept, the basic conceptual unit which has a conserved name and is used in other complex concepts

  • Named concept gene ontology concept recognizer (NCGOCR) reduced the arduous work of GO annotation and amended the process of searching for the biomarkers or drug targets, leading to improved biomarker development and greater success in precision medicine

Read more

Summary

Introduction

The individual genomic variability is emphasized in prevention, screening, diagnosis and treatment [1, 2]. In this regard, the discovery of new biomarkers or drug targets using genome-wide methods requires the support of bioinformatics tools. The data of GO annotation containing the genes and associated gene functions are manually collected from biomedical publications [3, 5]. The results acquired by experts who perform GO annotation can be applied to similar genes in other species through the use of software, manual biocuration obstructs the processing of the exponentially growing number of biomedical literature [5, 7, 8]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.