Abstract
Plasma lipids are modulated by gene variants and many environmental factors, including diet-associated weight gain. However, understanding how these factors jointly interact to influence molecular networks that regulate plasma lipid levels is limited. Here, we took advantage of the BXD recombinant inbred family of mice to query weight gain as an environmental stressor on plasma lipids. Coexpression networks were examined in both nonobese and obese livers, and a network was identified that specifically responded to the obesogenic diet. This obesity-associated module was significantly associated with plasma lipid levels and enriched with genes known to have functions related to inflammation and lipid homeostasis. We identified key drivers of the module, including Cidec, Cidea, Pparg, Cd36, and Apoa4. The Pparg emerged as a potential master regulator of the module as it can directly target 19 of the top 30 hub genes. Importantly, activation of this module is causally linked to lipid metabolism in humans, as illustrated by correlation analysis and inverse-variance weighed Mendelian randomization. Our findings provide novel insights into gene-by-environment interactions for plasma lipid metabolism that may ultimately contribute to new biomarkers, better diagnostics, and improved approaches to prevent or treat dyslipidemia in patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.