Abstract

Abstract Escherichia coli (E coli) is one of the most commonly found pathogens in hospitals. Infections such as gastroenteritis, cystitis, urinary tract infections (UTI), meningitis, septicemia, and peritonitis were previously treated with broad-spectrum antibiotics. However, the emergence of infectious diseases involving multidrug-resistant (MDR) bacterial pathogens is still a major threat to human health. This study aimed to investigate the SulI (sulfonamide), TetA (tetracycline), and TetB resistance genes in E coli isolated from urine specimens from hospitalized patients. In the present cross-sectional study, a total of 55 strains of E coli were isolated from urine cultures of patients who had UTIs in ElKasr ElEiny and ELShorta hospitals. Samples were analyzed for bacteriological, biochemical examination, and agar disc-diffusion to evaluate their antibiotic susceptibility patterns. Polymerase chain reaction (PCR) method also was used to detect SulI, TetA/B genes by specific primers. The results suggested that E coli isolates were resistant to all multiple drugs used. Ampicillin showed the highest resistance of all the isolates followed by sulfonamide and tetracycline at 70%, 62%, and 53%, respectively. The lowest resistance detected with levofloxacin was 12%; however, there is no difference in the resistance pattern of gentamycin and aztreonam. The genotypes’ amplification revealed a positive correlation between SulI (sulfonamide) and TetA/B (tetracycline) resistance encoding genes and was shown in all the tested isolates as 100%. In our study, we found a mutation for sulfonamide and tetracycline genes in E coli that was isolated from UTI patients. The mutation is responsible for a multidrug-resistant strain due to the overuse of antibiotics. However, the World Health Organization recommends the use of trimethoprim-sulfamethoxazole and ampicillin as the first choice for UTI treatment. Our study recommends regulating and limiting the use of those antibiotics in order to minimize the dissemination of multidrug resistance for E coli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call