Abstract

The molecular mechanisms underlying the development of epilepsy, i.e., epileptogenesis, are due to altered expression of a series of genes. Global expression profiling of temporal lobe epilepsy is confounded by a number of factors, including the variability among animal species, animal models, and tissue sampling time-points. In this study, we pooled two microarray datasets of the most used pilocarpine and kainic acid epilepsy models from the Gene Expression Omnibus database. A total of 567 known and novel genes were commonly differentially expressed across the two models. Pathway analyses demonstrated that the dysregulated genes were involved in 46 pathways. Real-time PCR and western blot analysis confirmed the activation of extracellular matrix (ECM)/integrin signaling pathways. Moreover, targeting ECM/integrin signaling inhibits astrocyte activation and promotes neuron injury in the hippocampus of epileptic mice. This study may provide a “gene/pathway database” that with further investigation can determine the mechanisms underlining epileptogenesis and the possible targets for neuron protection in the hippocampus after status epilepticus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call