Abstract
Transcriptome analysis of a rat polycystic kidney disease (PKD) model: importance of genes involved in extracellular matrix metabolism. PKD is a common genetic cause of chronic renal failure, and is characterized by the accumulation of fluid-filled cysts in the kidneys and other organs. Abnormalities in the expression of selected genes thought to be involved in cystogenesis have been described, but no systematic analysis of the global transcriptomal pattern has been reported. With this aim, a rat oligomicroarray was used to identify variations in gene expression in Han:Sprague-Dawley Cy/Cy rats, an animal model presenting a severe PKD phenotype. Some upregulated genes were validated using real-time polymerase chain reaction in Cy/Cy and Cy/+ rats. Among the 350 genes identified as being upregulated, we found about 30 genes involved in extracellular matrix metabolism. These genes encoded proteins or peptides that could be implicated into two different biological processes: molecules involved in fibrosis and proteins involved in adhesion to the extracellular matrix. In heterozygotes, some genes (glypican 3, fibronectin 1) were already upregulated in early stages of the disease. We conclude that differential regulation of genes linked to extracellular matrix metabolism may be one of the first events leading to tubule enlargement and subsequent cyst formation in PKD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.