Abstract

Achieving a real understanding of animal development obviously requires a comprehensive rather than partial identification of the genes working in each developmental process. Recent decoding of genome sequences will enable us to perform such studies. An ascidian, Ciona intestinalis, one of the animals whose genome has been sequenced, is a chordate sharing a basic body plan with vertebrates, although its genome contains less paralogs than are usually seen in vertebrates. In the present study, we discuss the genomewide approach to networks of developmental genes in Ciona embryos. We focus on transcription factor genes and some major groups of signal transduction genes. These genes are comprehensively listed and examined with regard to their embryonic expression by in situ hybridization (http://ghost.zool.kyoto-u.ac.jp/tfst.html). The results revealed that 74% of the transcription factor genes are expressed maternally and that 56% of the genes are zygotically expressed during embryogenesis. Of these, 34% of the transcription factor genes are expressed both maternally and zygotically. The number of zygotically expressed transcription factor genes increases gradually during embryogenesis. As an example, and taking advantage of this comprehensive description of gene expression profiles, we identified transcription factor genes and signal transduction genes that are expressed at the early gastrula stage and that work downstream of beta-catenin, FoxD and/or Fgf9/16/20. Because these three genes are essential for ascidian endomesoderm specification, transcription factor genes and signal transduction genes involved in each of the downstream processes can be deduced comprehensively using the present approach.

Highlights

  • Ascidians belong to the subphylum Urochordata, which is one of the three chordate groups

  • We listed the transcription factor genes encoded in the Ciona intestinalis genome

  • The patterns revealed answer several fundamental questions about how the transcription factor genes are used to build up the basic chordate body plan

Read more

Summary

Introduction

Ascidians belong to the subphylum Urochordata, which is one of the three chordate groups Their fertilized eggs develop into tadpole-type larvae that consist of about 2600 cells that form several distinct types of tissue (reviewed by Satoh, 1994; Satoh et al, 2003). The tail of the larva contains the notochord flanked dorsally by the nerve cord, ventrally by the endodermal strand and bilaterally by three rows of muscle cells. The entire surface of the larva is covered by an epidermis This configuration of the ascidian tadpole is thought to represent one of the most simplified and primitive chordate body plans (reviewed by Satoh and Jeffery, 1995; Di Gregorio and Levine, 1998; Satou and Satoh, 1999; Corbo et al, 2001; Satoh, 2003)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.