Abstract
Anadromous Pacific salmon (genus Oncorhynchus) are known for their homing behavior based on olfactory imprinting, which is formed during their seaward migration. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE/Snare) complex is a minimum unit of vesicle exocytosis from the pre-synaptic membrane. Its component genes (synaptosome-associated protein 25, syntaxin 1, and vesicle-associated membrane protein 2) are more strongly expressed in the olfactory nervous system (olfactory epithelium, olfactory bulb, and telencephalon) at the migration stages related to olfactory imprinting and/or retrieval in salmon. This study focused on the mRNA synthesis of synaptophysin (Syp), one of the Snare regulatory factors. syp is strongly expressed in chum salmon (Oncorhynchus keta) olfactory nervous system during the seaward migration and temporarily increased during the homeward migration. In reference to our previous studies, these expression changes were similar to the snare genes in the chum salmon. Therefore, syp and Snare component genes were synchronously expressed reflecting the development and short-term plasticity of the olfactory nervous system that is essential for olfactory imprinting.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have