Abstract

Anabolic and catabolic markers of muscle protein metabolism were examined in inactivity-induced atrophying muscles with and without daily short-duration, high-resistance isometric contractions. Inactivity was achieved via spinal cord isolation (SI), which results in near inactivity of the hindlimb musculature without compromising the motoneuron-muscle connectivity. Adult rats were assigned to a control (Con) or SI group in which one limb was stimulated (SI-Stim, 5 consecutive days of brief bouts of high-load isometric contractions) while the other served as a SI control (SI). Both the medial gastrocnemius (MG) and soleus weights (relative to body weight) were approximately 71% of Con in the SI, but maintained at Con in the SI-Stim group. Activity of the IGF-1/phosphatidylinositol 3-kinase (PI3K)/Akt pathway of protein synthesis was similar among all groups in the MG. Expression of atrogin-1 and muscle RING finger-1 (MuRF-1), markers of protein degradation, were higher in the MG and soleus of the SI than Con and maintained at Con in the SI-Stim. Compared with Con, the anti-growth factor myostatin was unaffected in the MG and soleus in the SI but was lower in the MG of the SI-Stim. These results demonstrate that upregulation of specific protein catabolic pathways plays a critical role in SI-induced atrophy, while this response was blunted by 4 min of daily high-resistance electromechanical stimulation and was able to preserve most of the muscle mass. Although the protein anabolic pathway (IGF-1/PI3K/Akt) appears to play a minor role in regulating mass in the SI model, increased translational capacity may have contributed to mass preservation in response to isometric contractions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call