Abstract
The role of neuromuscular activity in maintaining the normal enzyme heterogeneity found in a predominantly fast mixed muscle was studied. Enzymatic profiles of single fibers in the adult cat medial gastrocnemius (MG) were examined after almost complete elimination of neuromuscular activity for 6 mo. Inactivity was achieved by spinal cord isolation (SI), i.e., spinal transection at T12-T13 and L7-S1 combined with bilateral dorsal rhizotomy between the two transection sites. Cross-sectional area and succinate dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPD) activities were determined in a population of fibers identified in frozen serial cross sections. Each fiber was categorized as light or dark on the basis of its staining characteristics for qualitative myosin adenosinetriphosphatase (ATPase), alkaline preincubation, and its reaction to fast and slow myosin heavy chain (MHC) antibodies. SI resulted in a conversion of nearly all light (approximately 36% in the control) to dark ATPase fibers. Virtually all MG fibers in the SI cats reacted with the fast MHC antibody, whereas very few fibers reacted with slow MHC antibody. On the basis of fiber cross-sectional area, it was estimated that the MG atrophied by approximately 10% after SI. Compared with the mean of the dark and light ATPase fibers in control (weighted by the percent fiber type distribution), mean SDH activity was significantly lower (approximately 70%) and mean GPD activity was significantly higher (approximately 120%) in the SI cats. These data indicate that prolonged electrical silence of a mixed fast hindlimb extensor results in virtually all fibers expressing fast MHC as well as oxidative and glycolytic enzyme profiles normally observed in fast glycolytic fibers.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.