Abstract
With conventional treatments for primary immunodeficiency diseases (PIDs), such as allogeneic stem cell transplantation or autologous gene therapy, still facing important challenges, the rapid development of genome editing technologies to more accurately correct the mutations underlying the onset of genetic disorders has provided a new alternative, yet promising platform for the treatment of such diseases. The prospect of a more efficient and specific therapeutic tool has pushed many researchers to apply these editing tools to correct genetic, phenotypic, and functional defects of numerous devastating PIDs with extremely promising results to date. Despite these achievements, lingering concerns about the safety and efficacy of genome editing are currently being addressed in preclinical studies. This review summarizes the progress made toward the development of gene editing technologies to treat PIDs and the optimizations that still need to be implemented to turn genome editing into a next-generation treatment for rare monogenic life-threatening disorders.
Highlights
Gene Editing for the Treatment of Primary Immunodeficiency DiseasesWith conventional treatments for primary immunodeficiency diseases (PIDs), such as allogeneic stem cell transplantation or autologous gene therapy, still facing important challenges, the rapid development of genome editing technologies to more accurately correct the mutations underlying the onset of genetic disorders has provided a new alternative, yet promising platform for the treatment of such diseases
PRIMARY IMMUNODEFICIENCY DISEASES (PIDs) constitute a heterogeneous group of rare genetic disorders impairing the development, regulation, and function of the immune system
The limited availability of Human Leukocyte Antigen (HLA)-matched donors poses a constraint for many patients, and transplantation using HLA-mismatched donors is increasingly successful, it comes with significant risks, including graft versus host disease and graft rejection leading to incomplete immune cell reconstitution and higher risks of mortality and long-term morbidity
Summary
With conventional treatments for primary immunodeficiency diseases (PIDs), such as allogeneic stem cell transplantation or autologous gene therapy, still facing important challenges, the rapid development of genome editing technologies to more accurately correct the mutations underlying the onset of genetic disorders has provided a new alternative, yet promising platform for the treatment of such diseases. The prospect of a more efficient and specific therapeutic tool has pushed many researchers to apply these editing tools to correct genetic, phenotypic, and functional defects of numerous devastating PIDs with extremely promising results to date. Despite these achievements, lingering concerns about the safety and efficacy of genome editing are currently being addressed in preclinical studies. This review summarizes the progress made toward the development of gene editing technologies to treat PIDs and the optimizations that still need to be implemented to turn genome editing into a next-generation treatment for rare monogenic life-threatening disorders
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.