Abstract

Each person differs from the next by an average of over 3 million genetic variations in their DNA. This genetic diversity is responsible for many of the interindividual differences in food preferences, nutritional needs, and dietary responses between humans. The field of nutrigenetics aims to utilize this type of genetic information in order to personalize diets for optimal health. One of the most well-studied genetic variants affecting human dietary patterns and health is the lactase persistence mutation, which enables an individual to digest milk sugar into adulthood. Lactase persistence is one of the most influential Mendelian factors affecting human dietary patterns to occur since the beginning of the Neolithic Revolution. However, the lactase persistence mutation is only one of many mutations that can influence the relationship between dairy intake and disease risk. The purpose of this review is to summarize the available nutrigenetic literature investigating the relationships between genetics, dairy intake, and health outcomes. Nonetheless, the understanding of an individual’s nutrigenetic responses is just one component of personalized nutrition. In addition to nutrigenetic responses, future studies should also take into account nutrigenomic responses (epigenomic, transcriptomic, proteomic, metabolomic), and phenotypic/characteristic traits (age, gender, activity level, disease status, etc.), as these factors all interact with diet to influence health.

Highlights

  • The fields of nutrigenetics and nutrigenomics both aim to elucidate how the genome interacts with nutrition to influence health

  • The purpose of this review is to summarize the available nutrigenetic literature investigating the relationships between genetics, dairy intake, and health outcomes in order to further explore the concept of personalized nutrition

  • While this review of nutrigenetic studies has focused solely on one food group and a few select genetic mutations, it has clearly shown the complexities of understanding and utilizing the information gathered from studies of gene–diet interactions

Read more

Summary

Introduction

The fields of nutrigenetics and nutrigenomics both aim to elucidate how the genome interacts with nutrition to influence health. They differ in that nutrigenetics focuses on how gene variants influence responses to diet, while nutrigenomics focuses on how diet affects gene expression. Most of the well-studied nutritional genomic relationships are nutrigenetic. A mutation in the gene coding for the enzyme phenylalanine hydroxylase leads to an inability to properly metabolize the amino acid phenylalanine, resulting in the life-threatening disease phenylketonuria (PKU) [2]. Lactase assists in the breakdown of milk sugar in the small intestine and is associated with a variety of complex health and disease outcomes in different populations [5,6]

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call