Abstract

BackgroundSexual differentiation in female mammals can be altered by the proximity of male littermates in utero, a phenomenon known as the intrauterine position effect (IUP). Among simian primates, callitrichines (marmosets and tamarins) are likely candidates for IUP, since they exhibit obligate dizygotic twinning and fetuses share extensive vascularization in utero. In this paper, we determined whether female reproductive parameters are altered by gestating with a male twin and evaluated changes in genes associated with anti-Müllerian and steroid hormones in twinning callitrichine primates.MethodsWe assessed the impact of gestation with male cotwins on reproductive performance and survivorship in female marmosets (Callithrix) and lion tamarins (Leontopithecus), contrasting measures for females gestated with one or more littermates (M+) or no male littermates (0M). We compared targeted coding regions for genes involved in steroidal and anti-Müllerian hormone mediation of sexual differentiation for representatives of twinning callitrichines (Callithrix, Saguinus, and Leontopithecus) with closely related New World primates that produce single births (Saimiri and Callimico).ResultsIUP effects in females were absent in female callitrichine primates: age at first ovulation, average litter size, and the proportion of stillborn infants, and lifetime survivorship did not differ between M+ and 0M females. We documented multiple nonsynonymous substitutions in genes associated with steroid synthesis, transport, and cellular action (SRD5A2, CYP19A1, SHBG, and AR) and with anti-Müllerian hormone (AMH and AMHR2) in callitrichines. In the only callitrichine to produce single infants (Callimico), two genes contained nonsynonymous substitutions relative to twinning callitrichines (CYP19A1 and AMRHR2); these substitutions were identical with nontwinning Saimiri and humans, suggesting a reversion to an ancestral sequence.ConclusionsIn spite of a shared placental vasculature with opposite-sex twins throughout embryonic and fetal development, female callitrichine primates gestated with a male cotwin exhibit no decrement in reproductive performance relative to females gestated with female cotwins. Hence, IUP effects on female reproduction in callitrichines are modest. We have identified mutations in candidate genes relevant for steroid hormone signaling and metabolism, and especially in AMH-related genes, that are likely to alter protein structure and function in the callitrichines. These mutations may confer protection for females from the masculinizing and defeminizing influences of gestating with a male cotwin.Electronic supplementary materialThe online version of this article (doi:10.1186/s13293-016-0081-y) contains supplementary material, which is available to authorized users.

Highlights

  • Sexual differentiation in female mammals can be altered by the proximity of male littermates in utero, a phenomenon known as the intrauterine position effect (IUP)

  • In spite of a shared placental vasculature with opposite-sex twins throughout embryonic and fetal development, female callitrichine primates gestated with a male cotwin exhibit no decrement in reproductive performance relative to females gestated with female cotwins

  • A host of environmental variables work in concert with these genetic and endocrine factors to canalize the process of sexual differentiation, and the sex and location of littermates in utero have been identified as important variables that can modulate the process of differentiation

Read more

Summary

Introduction

Sexual differentiation in female mammals can be altered by the proximity of male littermates in utero, a phenomenon known as the intrauterine position effect (IUP). We determined whether female reproductive parameters are altered by gestating with a male twin and evaluated changes in genes associated with anti-Müllerian and steroid hormones in twinning callitrichine primates. Sexual differentiation toward male phenotypes is associated with the presence of the Sry gene, whose protein products result in the development of testes from undifferentiated gonadal tissue [1]. The autosomal gene Sox plays an important role in sexual differentiation, primarily through the upregulation of anti-Müllerian hormone (AMH) production from testicular Sertoli cells [2, 3]. Female fetuses that are gestated in closer proximity to male fetuses become partially masculinized, presumably as a consequence of the vascular diffusion of endocrine secretions of male origin via the fetoplacental circulatory system [5, 6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call