Abstract

Glutathione peroxidases (GPXs) are redox sensor proteins that maintain a steady-state of H2O2 in plant cells. They exhibit distinct sub-cellular localization and have diverse functionality in response to different stimuli. In this study, a total of 14 TaGPX genes and three splice variants were identified in the genome of Triticum aestivum and evaluated for various physicochemical properties. The TaGPX genes were scattered on the various chromosomes of the A, B, and D sub-genomes and clustered into five homeologous groups based on high sequence homology. The majority of genes were derived from the B sub-genome and localized on chromosome 2. The intron-exon organization, motif and domain architecture, and phylogenetic analyses revealed the conserved nature of TaGPXs. The occurrence of both development-related and stress-responsive cis-acting elements in the promoter region, the differential expression of these genes during various developmental stages, and the modulation of expression in the presence of biotic and abiotic stresses suggested their diverse role in T. aestivum. The majority of TaGPX genes showed higher expression in various leaf developmental stages. However, TaGPX1-A1 was upregulated in the presence of each abiotic stress treatment. A co-expression analysis revealed the interaction of TaGPXs with numerous development and stress-related genes, which indicated their vital role in numerous biological processes. Our study revealed the opportunities for further characterization of individual TaGPX proteins, which might be useful in designing future crop improvement strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.