Abstract

The present paper focused on the prediction of the university student's gender towards Information Communication Technology (ICT) and Mobile Technology (MT) in Indian and Hungary.In this paper, four experiments were performed on dataset using three popular classifiersnamed Support Vector Machine (SVM), Artificial Neural Network (ANN) and Random Forest (RF) with three numerous testing technique such as K-fold Cross Validation (KCV), Hold Out (HO) and Leave One Out (LOO).Three different applications named Explorer, Experimenter and KnowledgeFlow (KF) of Weka 3.9.1 are used for predictive modeling. The class balancing has been also applied using Synthetic Minority Over-Sampling (SMOTE) to enhance the prediction accuracy of each algorithm. Further, a significant difference among classifier’s accuracies has also been tested using T-test at the 0.05 confidence level. Also, CPU user time has been calculated to train each model to justify to present real-time prediction of gender towards ICT and MT.The results of the study inferred that the CPU time is significantly differed in between RF (0.18 Seconds), SVM (0.06 seconds) and ANN (4.40 seconds).Also, the RF classifier (89.4%) outperformed others with LOO method in terms of accuracy.The authors recommended these predictive models to be deployed as an online prediction for the gender of the student towards ICT and MT at both universities to track technological activities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.