Abstract
The metabolic response to a 120-min cycling exercise with ingestion of [(13)C]glucose (3 g kg(-1)) was compared in women in the follicular phase of the cycle [ n=6; maximum rate of oxygen uptake (VO(2max)) 44.7 (2.6) ml kg(-1) min(-1)] and in men [ n=6; VO(2max) 54.2 (4.3) ml kg(-1) min(-1)] working at the same relative workload (approximately 65% VO(2max): 107 and 179 W in women and men, respectively). We hypothesized that the contribution of endogenous substrate oxidations (indirect respiratory calorimetry corrected for protein oxidation) to the energy yield will be similar in men and women, but that women will rely more than men on exogenous glucose oxidation. Over the exercise period, the respective contributions of protein, lipid and carbohydrate oxidation to the energy yield, were similar in men [3.7 (0.9), 21.7 (2.9) and 74.6 (3.5)%] and women [3.4 (0.8), 21.5 (2.2), 75.1 (2.5)%]. The rate of exogenous glucose oxidation was approximately 45% lower in women than men (0.5 and 0.6 g min(-1) vs 0.7 and 0.9 g min(-1), between min 40 and 80, and min 80 and 120, respectively). However, when the approximately 39% difference in absolute workload and energy expenditure was taken into account, the contribution of exogenous glucose oxidation to the energy yield was similar in men and women: 22.5 vs 24.2% between min 40 and 80, and 25.7 and 28.5% between min 80 and 120, respectively. These data indicate that when fed glucose, the respective contributions of the oxidation of the various substrates to the energy yield during prolonged exercise at the same % VO(2max) are similar in men and in women in the follicular phase of the cycle.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have