Abstract
The system allowing to extract all the possible information about depicted people from the input video stream is discussed. As reported previously, the proposed system consists of five consecutive stages: face detection, face tracking, gender recognition, age classification and statistics analysis. The crucial part of the system is gender classifier construction on the basis of machine learning methods. We propose a novel algorithm consisting of two stages: adaptive feature extraction and support vector machine classification. Both training technique of the proposed algorithm and experimental results acquired on a large image dataset are presented. More than 90% accuracy of viewer's gender recognition is achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.