Abstract
An application for video data analysis based on computer vision methods is presented. The proposed system consists of five consecutive stages: face detection, face tracking, gender recognition, age classification and statistics analysis. AdaBoost classifier is utilized for face detection. A modification of Lucas and Kanade algorithm is introduced on the stage of tracking. Novel gender and age classifiers based on adaptive features, local binary patterns and support vector machines are proposed. More than 92 % accuracy of viewer’s gender recognition is achieved. All the stages are united into a single system of audience analysis. The system allows to extract all the possible information about depicted people from the input video stream, to aggregate and analyze this information in order to measure different statistical parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.