Abstract

With aggressive technology scaling, soft errors have become a major threat in modern computing systems. Several techniques have been proposed in the literature and implemented in actual devices as countermeasures to this problem. However, their effectiveness in ensuring error-free computing cannot be ascertained without an accurate reliability estimation methodology. This can be achieved by using the vulnerability metric: the probability of system failure as a function of the time the program data are exposed to transient faults. In this work, we present a gemV-tool, a comprehensive toolset for estimating system vulnerability, based on the cycle-accurate gem5 simulator. The three main characteristics of the gemV-tool are: (i) fine-grained modeling: vulnerability modeling at a fine-grained granularity through the use of RTL abstraction; (ii) accurate modeling: accurate vulnerability calculation of speculatively executed instructions; and (iii) comprehensive modeling: vulnerability estimation of all the sequential elements in the out-of-order processor core. We validated our vulnerability models through extensive fault injection campaigns with <3% correlation error and 90% statistical confidence. Using the gemV-tool, we made the following observations: (i) the vulnerability of two microarchitectural configurations with similar performance can differ by 82%; (ii) the vulnerability of a processor can vary by more than 10×, depending on the implemented algorithm; and (iii) the vulnerability of each component in the processor varies significantly, depending on the ISA of the processor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.