Abstract
Estimating failure probabilities of engineering systems is an important problem in many engineering fields. In this work we consider such problems where the failure probability is extremely small (e.g. ≤10−10). In this case, standard Monte Carlo methods are not feasible due to the extraordinarily large number of samples required. To address these problems, we propose an algorithm that combines the main ideas of two very powerful failure probability estimation approaches: the subset simulation (SS) and the multicanonical Monte Carlo (MMC) methods. Unlike the standard MMC which samples in the entire domain of the input parameter in each iteration, the proposed subset MMC algorithm adaptively performs MMC simulations in a subset of the state space, which improves the sampling efficiency. With numerical examples we demonstrate that the proposed method is significantly more efficient than both of the SS and the MMC methods. Moreover, like the standard MMC, the proposed algorithm can reconstruct the complete distribution function of the parameter of interest and thus can provide more information than just the failure probabilities of the systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.