Abstract

Ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii utilizes adenosylcobalamin and catalyzes the conversion of nucleoside triphosphates to deoxynucleoside triphosphates. One equivalent of 2',2'-difluoro-2'-deoxycytidine 5'-triphosphate, F2dCTP, rapidly inactivates RTPR. Analysis of the reaction products reveals that inactivation is accompanied by release of two fluoride ions and 0.84 equiv of 5'-deoxyadenosine and attachment of 1 equiv of corrin covalently to an active-site cysteine residue of RTPR. No cytosine release was detected. Proteolysis of corrin-labeled RTPR with endoproteinase Glu-C and peptide mapping at pH 5.8 revealed that C419 was predominantly modified. The kinetics of the inactivation have been examined by stopped-flow (SF) UV-vis spectroscopy and rapid freeze quench (RFQ) electron paramagnetic resonance (EPR) spectroscopy. Monitoring DeltaA525 nm shows that cob(II)alamin is formed with an apparent kobs of 50 s-1, only 2. 5-fold slower than a similar experiment carried out with cytidine 5'-triphosphate (CTP). The same reaction mixture was thus quenched at times from 22 ms to 30 s and examined by EPR spectroscopy. At early time points the EPR spectrum resembled a thiyl radical exchange coupled to cob(II)alamin. From 22 to 255 ms the total spin concentration remained unchanged at 1.4 spins/RTPR, twice that predicted by the amount of cob(II)alamin determined by SF. However, with time the signal attributed to the thiyl radical-cob(II)alamin disappears and new signal(s) with broad feature(s) at g = 2.33 and a sharp feature at g = 2.00 appeared, suggesting formation of cob(II)alamin and a nucleotide-based radical with only dipolar interactions. These studies have been interpreted to support the proposal that an RTPR-based thiyl radical can give rise to a nucleotide-based radical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call