Abstract

Structural characterization of protein-ligand binding interfaces at atomic resolution is essential for improving the design of specific and potent inhibitors. Herein, we explored fast 19F- and 1H-detected magic angle spinning NMR spectroscopy to investigate the interaction between two fluorinated ligand diastereomers with the microcrystalline galectin-3 carbohydrate recognition domain. The detailed environment around the fluorine atoms was mapped by 2D 13C-19F and 1H-19F dipolar correlation experiments and permitted characterization of the binding interface. Our results demonstrate that 19F MAS NMR is a powerful tool for detailed characterization of protein-ligand interfaces and protein interactions at the atomic level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.