Abstract

Injuries to the nervous system affect more than one billion people worldwide, and dramatically impact on the patient’s quality of life. The present work aimed to design and develop a gellan gum (GG)-based composite system for the local delivery of the neuroprotective sigma-1 receptor agonist, 1-[3-(1,1′-biphen)-4-yl] butylpiperidine (RC-33), as a potential tool for the treatment of tissue nervous injuries. The system, consisting of cross-linked electrospun nanofibers embedded in a RC-33-loaded freeze-dried matrix, was designed to bridge the lesion gap, control drug delivery and enhance axonal regrowth. The gradual matrix degradation should ensure the progressive interaction between the inner fibrous mat and the surrounding cellular environment. Nanofibers, prepared by electrospinning polymeric solutions containing GG, two different grades of poly (ethylene oxide) and poloxamer, were cross-linked with calcium ions. GG-based matrices, loaded with different amounts of RC-33, were prepared by freeze-drying. Dialysis studies and solid-state characterization pointed out the formation of an interaction product between GG and RC-33. RC-33-loaded freeze-dried matrices were characterized by the capability to absorb a high buffer content, forming a gel with marked viscoelastic properties, and by RC-33 controlled release properties. The presence of cross-linked nanofibers increased matrix mechanical resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.