Abstract
BackgroundThe chaperon heat shock protein 90 (HSP90) constitutes an important target for anti-tumor therapy due to its essential role in the stabilization of oncogenes. However, HSP90 is ubiquitously active to orchestrate protein turnover, chemotherapeutics that target HSP90 may affect immune cells as a significant side effect. Therefore, we asked for potential effects of pharmacological HSP90 inhibition at a therapeutically relevant concentration on human dendritic cells (DCs) as main inducers of both cellular and humoral immune responses, and on human CD4+ T cells as directly activated by DCs and essential to confer B cell help.MethodsUnstimulated human monocyte-derived DCs (MO-DCs) were treated with the prototypical HSP90 inhibitor geldanamycin (GA). Based on dose titration studies performed to assess cytotoxic effects, GA was applied at a rather low concentration, comparable to serum levels of clinically used HSP90 inhibitors. The immuno-phenotype (surface markers, cytokines), migratory capacity, allo T cell stimulatory and polarizing properties (proliferation, cytokine pattern) of GA-treated MO-DCs were assessed. Moreover, effects of GA on resting and differentially stimulated CD4+ T cells in terms of cytotoxicity and proliferation were analysed.ResultsGA induced partial activation of unstimulated MO-DCs. In contrast, when coapplied in the course of MO-DC stimulation, GA prevented the acquisition of a fully mature DC phenotype. Consequently, this MO-DC population exerted lower allo CD4+ T cell stimulation and cytokine production. Furthermore, GA exerted no cytotoxic effect on resting T cells, but abrogated proliferation of T cells stimulated by MO-DCs at either state of activation or by stimulatory antibodies.ConclusionHSP90 inhibitors at clinically relevant concentrations may modulate adaptive immune responses both on the level of DC activation and T cell proliferation. Surprisingly, unstimulated DCs may be partially activated by that agent. However, due to the potent detrimental effects of HSP90 inhibitors on stimulated CD4+ T cells, as an outcome a patients T cell responses might be impaired. Therefore, HSP90 inhibitors most probably are not suitable for treatment in combination with immunotherapeutic approaches aimed to induce DC/T cell activation.
Highlights
The chaperon heat shock protein 90 (HSP90) constitutes an important target for anti-tumor therapy due to its essential role in the stabilization of oncogenes
GA prevented the proliferation of stimulated T cells. These findings suggest that inhibition of HSP90 may differentially affect the dendritic cells (DCs) activation state as well as T cell responses in individuals treated with HSP90-inhibiting chemotherapeutics
In light of the well acknowledged importance of NF-κB activity for the DC activation process, and the finding that GA evoked slightly elevated NF-κB activation under basal conditions, we asked for effects of GA on NF-κB regulation in monocyte-derived DCs (MO-DCs)
Summary
The chaperon heat shock protein 90 (HSP90) constitutes an important target for anti-tumor therapy due to its essential role in the stabilization of oncogenes. Based on the vital role of HSP90 to stabilize mutated oncogenic proteins and to promote accumulation of over-expressed oncogenes [3], and its high level expression in tumor cells [4], this chaperone has gained longstanding interest as a molecular target for cancer therapy [5]. In this regard, the prototypic HSP90 inhibitor geldanamycin (GA) exerted strong proapoptotic effects on tumor cells in vitro [6]. This suggests a modulatory role of HSP90 for the DC activation state
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have