Abstract

We investigated the effects of varying the volume fraction of large particles (r) on the linear rheology and microstructure of mixtures of polymers and bidisperse colloids, in which the ratio of the small and large particle diameters was α=0.31 or α=0.45. Suspensions formulated at a total volume fraction of ϕ_{T}=0.15 and a constant concentration of polymer in the free volume c/c^{*}≈0.7 contained solid-like gels for small r and fluids or fluids of clusters at large r. The solid-like rheology and microstructure of these suspensions changed little with r when r was small, and fluidized only when r>0.8. By contrast, dense suspensions with ϕ_{T}=0.40 and α=0.31 contained solid-like gels at all concentrations of large particles and exhibited only modest rheological and microstructural changes upon varying the volume fraction of large particles. These results suggest that the effect of particle-size dispersity on the properties of colloid-polymer mixtures are asymmetric in particle size and are most pronounced near a gelation boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.