Abstract
Cranberry waste contains potentially valuable components, such as proanthocyanidins, flavanols, and xyloglucan. Highly-purified xyloglucan (XG) from cranberries were studied through steady and oscillatory shear rheology at various concentrations and temperatures. At room temperature, an apparent yield stress is observed and the storage modulus exceeds the loss modulus (G′>G′′) for concentrations of 0.5 wt% and higher, indicating that the XG solution has formed a physical hydrogel. Thermoresponsive gelation is observed with a five-order of magnitude increase in shear moduli as it undergoes a weak to strong gel transition around 52 °C. The gelation time was 5 min with an observed storage moduli up to 3500 Pa. Cranberry-based XG exhibits thermoresponsive behavior at concentrations as low as 0.1 wt% (w/v), which is significantly lower than prior gelation studies of XG from other sources. The formation of a weak gel at room temperature and large storage moduli observed at room temperature is likely associated with the low level of impurities and small amount of galactose present in the XG chains.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have