Abstract

Hydrogels (HGs) are attractive matrices for cell-based cartilage tissue regeneration given their injectability and ability to fill defects with irregular shapes. However, most HGs developed to date often lack cell scale macroporosity, which restrains the encapsulated cells, leading to delayed new extracellular matrix deposition restricted to pericellular regions. Furthermore, tissue-engineered cartilage using conventional HGs generally suffers from poor mechanical property and fails to restore the load-bearing property of articular cartilage. The goal of this study was to evaluate the potential of macroporous gelatin-based microribbon (μRB) HGs as novel 3D matrices for accelerating chondrogenesis and new cartilage formation by human mesenchymal stem cells (MSCs) in 3D with improved mechanical properties. Unlike conventional HGs, these μRB HGs are inherently macroporous and exhibit cartilage-mimicking shock-absorbing mechanical property. After 21 days of culture, MSC-seeded μRB scaffolds exhibit a 20-fold increase in compressive modulus to 225 kPa, a range that is approaching the level of native cartilage. In contrast, HGs only resulted in a modest increase in compressive modulus of 65 kPa. Compared with conventional HGs, macroporous μRB scaffolds significantly increased the total amount of neocartilage produced by MSCs in 3D, with improved interconnectivity and mechanical strength. Altogether, these results validate gelatin-based μRBs as promising scaffolds for enhancing and accelerating MSC-based cartilage regeneration and may be used to enhance cartilage regeneration using other cell types as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call