Abstract

Although most cellular polymers are made from thermoplastics using different foaming technologies, gelatin and many other natural polymers can form hydrogels and convert them to cellular solids using various techniques, many of which differ from traditional plastic foaming, and so does their resulting structures. Cellular solids from natural hydrogels are porous materials that often exhibit a combination of desirable properties, including high specific surface area, biochemical activity, as well as thermal and acoustic insulation properties. Among natural hydrogels, gelatin-based porous materials are widely explored due to their availability, biocompatibility, biodegradability and relatively low cost. In addition, gelatin-based cellular solids have outstanding properties and are currently subject to increasing scientific research due to their potential in many applications, such as biocompatible cellular materials or biofoams to facilitate waste treatment. This article aims at providing a comprehensive review of gelatin cellular solids processing and their processing-properties-structure relationship. The fabrication techniques covered include aerogels production, mechanical foaming, blowing agents use, 3D printing, electrospinning and particle leaching methods. It is hoped that the assessment of their characteristics provides compiled information and guidance for selecting techniques and optimization of processing conditions to control material structure and properties to meet the needs of the finished products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call