Abstract

In this study, the design, additive manufacturing and experimental as well as simulation investigation of mechanical and thermal properties of cellular solids are addressed. For this, two cellular solids having nested and non-nested structures are designed and additively manufactured via laser powder bed fusion. The primary objective is to design cellular solids which absorb a significant amount of energy upon impact loading without transmitting a high amount of stress into the cellular solids. Therefore, compression testing of the two cellular solids is performed. The nested and non-nested cellular solids show similar energy absorption properties; however, the nested cellular solid transmits a lower amount of stress in the cellular structure compared to the non-nested cellular solid. The experimentally measured strain (by DIC) in the interior region of the nested cellular solid is lower despite a higher value of externally imposed compressive strain. The second objective of this study is to determine the thermal insulation properties of cellular solids. For measuring the thermal insulation properties, the samples are placed on a hot plate; and the surface temperature distribution is measured by an infrared camera. The thermal insulating performance of both cellular types is sufficient for temperatures exceeding 100 °C. However, the thermal insulating performance of a non-nested cellular solid is slightly better than that of the nested cellular solid. Additional thermal simulations predict a relatively higher temperature distribution on the cellular solid surfaces compared to experimental results. The simulated residual stress shows a similar distribution for both types, but the magnitude of residual stress is different for the cellular solids upon cooling from different temperatures of the hot plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.