Abstract
BackgroundFitness is strongly related to locomotor performance, which can determine success in foraging, mating, and other critical activities. Locomotor performance on different substrates is likely to require different abilities, so we expect alignment between species’ locomotor performance and the habitats they use in nature. In addition, we expect behaviour to enhance performance, such that animals will use substrates on which they perform well.MethodsWe examined the associations between habitat selection and performance in three species of Oedura geckos, including two specialists, (one arboreal, and one saxicolous), and one generalist species, which used both rocks and trees. First, we described their microhabitat use in nature (tree and rock type) for these species, examined the surface roughnesses they encountered, and selected materials with comparable surface microtopographies (roughness measured as peak-to-valley heights) to use as substrates in lab experiments quantifying behavioural substrate preferences and clinging performance.ResultsThe three Oedura species occupied different ecological niches and used different microhabitats in nature, and the two specialist species used a narrower range of surface roughnesses compared to the generalist. In the lab, Oedura geckos preferred substrates (coarse sandpaper) with roughness characteristics similar to substrates they use in nature. Further, all three species exhibited greater clinging performance on preferred (coarse sandpaper) substrates, although the generalist used fine substrates in nature and had good performance capabilities on fine substrates as well.ConclusionWe found a relationship between habitat use and performance, such that geckos selected microhabitats on which their performance was high. In addition, our findings highlight the extensive variation in surface roughnesses that occur in nature, both among and within microhabitats.
Highlights
Fitness is strongly related to locomotor performance, which can determine success in foraging, mating, and other critical activities
Microhabitat roughness and selection of test substrates Peak-to-valley heights are a two-dimensional measure of surface roughness used to compare surface microtopographies in this study
Our study examined whether clinging performance, in the context of substrate roughness, is related to microhabitat preference
Summary
Fitness is strongly related to locomotor performance, which can determine success in foraging, mating, and other critical activities. Traits like foraging performance [20], running [19], sprinting [18, 19], and clinging [19, 21] are a function of morphological adaptations that evolve in the context of habitat. These relationships between habitat use and performance, may mean animals only use certain subsets of the entire range of microhabitats available, in which their performance is high, or may, at least, avoid microhabitats in which they do not perform well. It is essential to incorporate habitat selection behaviour into studies investigating the relationship between habitat structure and performance [8]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have