Abstract

A gearshift control strategy for modern automated manual transmissions (AMTs) with dry clutches is proposed. The controller is designed through a hierarchical approach by discriminating among five different AMT operating phases: engaged, slipping-opening, synchronization, go-to-slipping, and slipping-closing. The control schemes consist of decoupled and cascaded feedback loops based on measurements of engine speed, clutch speed, and throwout bearing position, and on estimation of the transmitted torque. Models of driveline, dry clutch, and controlled actuator are estimated on experimental data of a medium size gasoline car and used to check through simulations the effectiveness of the proposed controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.