Abstract
Vibration signals of gearbox are sensitive to the existence of the fault. Based on vibration signals, this paper presents an implementation of deep learning algorithm convolutional neural network (CNN) used for fault identification and classification in gearboxes. Different combinations of condition patterns based on some basic fault conditions are considered. 20 test cases with different combinations of condition patterns are used, where each test case includes 12 combinations of different basic condition patterns. Vibration signals are preprocessed using statistical measures from the time domain signal such as standard deviation, skewness, and kurtosis. In the frequency domain, the spectrum obtained with FFT is divided into multiple bands, and the root mean square (RMS) value is calculated for each one so the energy maintains its shape at the spectrum peaks. The achieved accuracy indicates that the proposed approach is highly reliable and applicable in fault diagnosis of industrial reciprocating machinery. Comparing with peer algorithms, the present method exhibits the best performance in the gearbox fault diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.