Abstract

In our experiments, vertical aligned superlattices of multiple self-assembled Ge island layers separated by Si spacer layers on Si(100) substrates have been grown by ultra high vacuum chemical vapor deposition system (UHV/CVD). The photoluminescence of material was excited with 500nm laser and measured at 10 K, the PL peaks representing Ge islands and Si wetting layers were observed at 825 and 1010 mev respectively. Based on this material, samples of quantum dot infrared photo-detectors (QDIP), with p-i-n junctions, were fabricated. The responsivity of the detectors was measured with various semiconductor light-emitting diodes and semiconductor lasers. At room temperature and at -3V applied bias, for samples with 245 /spl times/ 245 /spl mu/m/sup 2/ large window and dark current I/sub d//spl sim/10/sup -9/A, the maximum photocurrent responsivity of 0.52 A/W at 774 nm was found, and 0.043mA/W at 1.31 /spl mu/m. Higher responsivities can be obtained with a waveguide geometry and optimization of the whole structure, such as thickness of layers and type of doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.