Abstract

The flicker noise characteristics of strained-Si nMOSFETs are significantly dependent on the gate oxide formation. At high temperature (900/spl deg/C) thermal oxidation, the Si interstitials at the Si/oxide interface were injected into the underneath Si-SiGe heterojunction, and enhanced the Ge outdiffusion into the Si/oxide interface. The Ge atoms at Si/oxide interface act as trap centers, and the strained-Si nMOSFET with thermal gate oxide yields a much larger flicker noise than the control Si device. The Ge outdiffusion is suppressed for the device with the low temperature (700/spl deg/C) tetraethylorthosilicate gate oxide. The capacitance-voltage measurements of the strained-Si devices with thermal oxide also show that the Si/oxide interface trap density increases and the Si-SiGe heterojunction is smeared out due to the Ge outdiffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.